首页 | 资讯动态 | linux基础 | 系统管理 | 网络管理 | 编程开发 | linux数据库 | 服务器技术 | linux相关 | linux认证 | 嵌入式 | 下载中心 | 专题 | linux招聘 | 镜像站
OKLinux中文技术站
·设为首页
·加入收藏
·联系我们
系统管理: 中文环境 系统管理 桌面应用 内核技术 | Linux基础: 基础入门 安装配置 常用命令 经验技巧 软件应用 | Linux数据库: Mysql Postgre Oracle DB2 Sybase other
网络管理: 网络安全 网络应用 Linux服务器 环境配置 黑客安全 | 编程开发: PHP CC++ Python Perl Shell 嵌入式开发 java jsp | PHP技术: PHP基础 PHP技巧 PHP应用 PHP文摘
Linux资讯 Linux招聘 Linux专题 Apache | Linux相关: 硬件相关 Linux解决方案 Linux认证 企业应用 其它Unix | 相关下载: 资料下载 参考手册 开发工具 服务器类 软路由 其它
 技术搜索:
会员中心 注册会员 高级搜索  
  → 当前位置:首页>系统管理>内核技术>正文

揭开Linux系统内核调试器的神秘面纱

http://www.oklinux.cn  2007-01-01  来源: 赛迪网技术社区  sixth   会员收藏  游客收藏  【 】 

KDB 入门指南

调试内核问题时,能够跟踪内核执行情况并查看其内存和数据结构是非常有用的。Linux 中的内置内 核调试器 KDB 提供了这种功能。在本文中您把了解怎么样使用 KDB 所提供的功能,以及怎么样在 Linux 机器上安装和设置 KDB。您还把熟悉 KDB 中可以使用的命令以及设置和显示选项。

Linux 内核调试器(KDB)允许您调试 Linux 内核。这个恰如其名的工具实质上是内核代码的补丁,它允许高手访问内核内存和数据结构。KDB 的主要优点之一就是它不需要用另一台机器进行调试:您可以调试正在运行的内核。

设置一台用于 KDB 的机器需要花费一些工作,因为需要给内核打补丁并进行重新编译。KDB 的用户应当熟悉 Linux 内核的编译(在一定程度上还要熟悉内核内部机理),但是如果您需要编译内核方面的帮助,请参阅本文结尾处的参考资料一节。

在本文中,我们把从有关下载 KDB 补丁、打补丁、(重新)编译内核以及启动 KDB 方面的信息着手。然后我们把了解 KDB 命令并研究一些较常用的命令。最后,我们把研究一下有关设置和显示选项方面的一些详细信息。

入门

KDB 项目是由 Silicon Graphics 维护的(请参阅参考资料以获取链接),您需要从它的 FTP 站点下载与内核版本有关的补丁。(在编写本文时)可用的最新 KDB 版本是 4.2。您把需要下载并应用两个补丁。

一个是“公共的”补丁,包含了对通用内核代码的更改,另一个是特定于体系结构的补丁。补丁可作为 bz2 文件获取。例如,在运行 2.4.20 内核的 x86 机器上,您会需要 kdb-v4.2-2.4.20-common-1.bz2 和 kdb-v4.2-2.4.20-i386-1.bz2。

这里所提供的所有示例都是针对 i386 体系结构和 2.4.20 内核的。您把需要根据您的机器和内核版本进行适当的更改。您还需要拥有 root 许可权以执行这些操作。

把文件复制到 /usr/src/linux 目录中并从用 bzip2 压缩的文件解压缩补丁文件:

#bzip2 -d kdb-v4.2-2.4.20-common-1.bz2

#bzip2 -d kdb-v4.2-2.4.20-i386-1.bz2

您把获得 kdb-v4.2-2.4.20-common-1 和 kdb-v4.2-2.4-i386-1 文件。

现在,应用这些补丁:

#patch -p1

#patch -p1

这些补丁应该干净利落地加以应用。查找任何以 .rej 结尾的文件。这个扩展名表明这些是失败的补丁。如果内核树没问题,那么补丁的应用就不会有任何问题。

接下来,需要构建内核以支持 KDB。第一步是设置 CONFIG_KDB 选项。使用您喜欢的配置机制(xconfig 和 menuconfig 等)来完成这一步。转到结尾处的“Kernel hacking”部分并选择“Built-in Kernel Debugger support”选项。

您还可以根据自己的偏好选择其它两个选项。选择“Compile the kernel with frame pointers”选项(如果有的话)则设置 CONFIG_FRAME_POINTER 标志。这把产生更好的堆栈回溯,因为帧指针寄存器被用作帧指针而不是通用寄存器。

您还可以选择“KDB off by default”选项。这把设置 CONFIG_KDB_OFF 标志,并且在缺省情况下把关闭 KDB。我们把在后面一节中对此进行详细介绍。

保存配置,然后退出。重新编译内核。建议在构建内核之前执行“make clean”。用常用方式安装内核并引导它。

初始化并设置环境变量

您可以定义把在 KDB 初始化期间执行的 KDB 命令。需要在纯文本文件 kdb_cmds 中定义这些命令,该文件位于 Linux 源代码树(当然是在打了补丁之后)的 KDB 目录中。该文件还可以用来定义设置显示和打印选项的环境变量。文件开头的注释提供了编辑文件方面的帮助。使用这个文件的缺点是,在您更改了文件之后需要重新构建并重新安装内核。

激活 KDB

如果编译期间没有选中 CONFIG_KDB_OFF,那么在缺省情况下 KDB 是活动的。否则,您需要显式地激活它 - 通过在引导期间把 kdb=on 标志传递给内核或者通过在挂装了 /proc 之后执行该工作:

#echo "1" >/proc/sys/kernel/kdb

倒过来执行上述步骤则会取消激活 KDB。也就是说,如果缺省情况下 KDB 是打开的,那么把 kdb=off 标志传递给内核或者执行下面这个操作把会取消激活 KDB:

#echo "0" >/proc/sys/kernel/kdb

我们可以看到 rmqueue() 被 __alloc_pages 调用,后者接下来又被 _alloc_pages 调用,以此类推。

每一帧的第一个双字(double word)指向下一帧,这后面紧跟着调用函数的地址。因此,跟踪堆栈就变成一件轻松的工作了。

go 命令可以有选择地以一个地址作为参数。如果您想在某个特定地址处继续执行,则可以提供该地址作为参数。另一个办法是使用 rm 命令修改指令指针寄存器,然后只要输入 go。如果您想跳过似乎会引起问题的某个特定指令或一组指令,这就会很有用。但是,请注意,该指令使用不慎会造成严重的问题,系统可能会严重崩溃。

您可以利用一个名为 defcmd 的有用命令来定义自己的命令集。例如,每当遇到断点时,您可能希望能同时检查某个特殊变量、检查某些寄存器的内容并转储堆栈。通常,您必须要输入一系列命令,以便能同时执行所有这些工作。defcmd 允许您定义自己的命令,该命令可以包含一个或多个预定义的 KDB 命令。然后只需要用一个命令就可以完成所有这三项工作。其语法如下:

[code:1:6ddc15f4ad][0]kdb> defcmd name "usage" "help"

[0]kdb> [defcmd] type the commands here

[0]kdb> [defcmd] endefcmd [/code:1:6ddc15f4ad]

例如,可以定义一个(简单的)新命令 hari,它显示从地址 0xc000000 开始的一行内存、显示寄存器的内容并转储堆栈:

[code:1:6ddc15f4ad][0]kdb> defcmd hari "" "no arguments needed"

[0]kdb> [defcmd] md 0xc000000 1

[0]kdb> [defcmd] rd

[0]kdb> [defcmd] md %ebp 1

[0]kdb> [defcmd] endefcmd [/code:1:6ddc15f4ad]

该命令的输出会是:

[code:1:6ddc15f4ad][0]kdb> hari

[hari]kdb> md 0xc000000 1

0xc000000 00000001 f000e816 f000e2c3 f000e816

[hari]kdb> rd

eax = 0x00000000 ebx = 0xc0105330 ecx = 0xc0466000 edx = 0xc0466000

....

...

[hari]kdb> md %ebp 1

0xc0467fbc c0467fd0 c01053d2 00000002 000a0200

[0]kdb> [/code:1:6ddc15f4ad]

可以使用 bph 和 bpha 命令(假如体系结构支持使用硬件寄存器)来应用读写断点。这意味着每当从某个特定地址读取数据或将数据写入该地址时,我们都可以对此进行控制。当调试数据/内存毁坏问题时这可能会极其方便,在这种情况中您可以用它来识别毁坏的代码/进程。

示例

[code:1:6ddc15f4ad]每当将四个字节写入地址 0xc0204060 时就进入内核调试器:

[0]kdb> bph 0xc0204060 dataw 4

在读取从 0xc000000 开始的至少两个字节的数据时进入内核调试器:

[0]kdb> bph 0xc000000 datar 2[/code:1:6ddc15f4ad]

[size=18:6ddc15f4ad]结束语[/size:6ddc15f4ad]

对于执行内核调试,KDB 是一个方便的且功能强大的工具。它提供了各种选项,并且使我们能够分析内存内容和数据结构。最妙的是,它不需要用另一台机器来执行调试。

C 语言作为 Linux 系统上标准的编程语言给予了我们对动态内存分配很大的控制权。然而,这种自由可能会导致严重的内存管理问题,而这些问题可能导致程序崩溃或随时间的推移导致性能降级。

内存泄漏(即 malloc() 内存在对应的 free() 调用执行后永不被释放)和缓冲区溢出(例如对以前分配到某数组的内存进行写操作)是一些常见的问题,它们可能很难检测到。这一部分将讨论几个调试工具,它们极大地简化了检测和找出内存问题的过程。

MEMWATCH 由 Johan Lindh 编写,是一个开放源代码 C 语言内存错误检测工具,您可以自己下载它(请参阅本文后面部分的参考资料)。只要在代码中添加一个头文件并在 gcc 语句中定义了 MEMWATCH 之后,您就可以跟踪程序中的内存泄漏和错误了。MEMWATCH 支持 ANSI C,它提供结果日志纪录,能检测双重释放(double-free)、错误释放(erroneous free)、没有释放的内存(unfreed memory)、溢出和下溢等等。

清单 1. 内存样本(test1.c)

[code:1:ff78191c7b]#include

#include

#include "memwatch.h"

int main(void)

{

char *ptr1;

char *ptr2;

ptr1 = malloc(512);

ptr2 = malloc(512);

ptr2 = ptr1;

free(ptr2);

free(ptr1);

}[/code:1:ff78191c7b]

清单 1 中的代码将分配两个 512 字节的内存块,然后指向第一个内存块的指针被设定为指向第二个内存块。结果,第二个内存块的地址丢失,从而产生了内存泄漏。

现在我们编译清单 1 的 memwatch.c。下面是一个 makefile 示例:

test1

[code:1:ff78191c7b]gcc -DMEMWATCH -DMW_STDIO test1.c memwatch c -o test1[/code:1:ff78191c7b]

当您运行 test1 程序后,它会生成一个关于泄漏的内存的报告。清单 2 展示了示例 memwatch.log 输出文件。

清单 2. test1 memwatch.log 文件

[code:1:ff78191c7b]MEMWATCH 2.67 Copyright (C) 1992-1999 Johan Lindh

...

double-free: <4> test1.c(15), 0x80517b4 was freed from test1.c(14)

...

unfreed: <2> test1.c(11), 512 bytes at 0x80519e4

{FE FE FE FE FE FE FE FE FE FE FE FE ..............}

Memory usage statistics (global):

N)umber of allocations made: 2

L)argest memory usage : 1024

T)otal of all alloc() calls: 1024

U)nfreed bytes totals : 512[/code:1:ff78191c7b]

MEMWATCH 为您显示真正导致问题的行。如果您释放一个已经释放过的指针,它会告诉您。对于没有释放的内存也一样。日志结尾部分显示统计信息,包括泄漏了多少内存,使用了多少内存,以及总共分配了多少内存。

[color=blue:ff78191c7b]YAMD[/color:ff78191c7b]

YAMD 软件包由 Nate Eldredge 编写,可以查找 C 和 C++ 中动态的、与内存分配有关的问题。在撰写本文时,YAMD 的最新版本为 0.32。请下载 yamd-0.32.tar.gz(请参阅参考资料)。执行 make 命令来构建程序;然后执行 make install 命令安装程序并设置工具。

一旦您下载了 YAMD 之后,请在 test1.c 上使用它。请删除 #include memwatch.h 并对 makefile 进行如下小小的修改:

使用 YAMD 的 test1

gcc -g test1.c -o test1

清单 3 展示了来自 test1 上的 YAMD 的输出。

清单 3. 使用 YAMD 的 test1 输出

[code:1:ff78191c7b]YAMD version 0.32

Executable: /usr/src/test/yamd-0.32/test1

...

INFO: Normal allocation of this block

Address 0x40025e00, size 512

...

INFO: Normal allocation of this block

Address 0x40028e00, size 512

...

INFO: Normal deallocation of this block

Address 0x40025e00, size 512

...

ERROR: Multiple freeing At

free of pointer already freed

Address 0x40025e00, size 512

...

WARNING: Memory leak

Address 0x40028e00, size 512

WARNING: Total memory leaks:

1 unfreed allocations totaling 512 bytes

*** Finished at Tue ... 10:07:15 2002

Allocated a grand total of 1024 bytes 2 allocations

Average of 512 bytes per allocation

Max bytes allocated at one time: 1024

24 K alloced internally / 12 K mapped now / 8 K max

Virtual program size is 1416 K

End.[/code:1:ff78191c7b]

YAMD 显示我们已经释放了内存,而且存在内存泄漏。让我们在清单 4 中另一个样本程序上试试 YAMD。

清单 4. 内存代码(test2.c)

[code:1:ff78191c7b]#include

#include

int main(void)

{

char *ptr1;

char *ptr2;

char *chptr;

int i = 1;

ptr1 = malloc(512);

ptr2 = malloc(512);

chptr = (char *)malloc(512);

for (i; i <= 512; i++) {

chptr[i] = 'S';

}

ptr2 = ptr1;

free(ptr2);

free(ptr1);

free(chptr);

}[/code:1:ff78191c7b]

您可以使用下面的命令来启动 YAMD:

[code:1:ff78191c7b]./run-yamd /usr/src/test/test2/test2 [/code:1:ff78191c7b]

清单 5 显示了在样本程序 test2 上使用 YAMD 得到的输出。YAMD 告诉我们在 for 循环中有“越界(out-of-bounds)”的情况。

清单 5. 使用 YAMD 的 test2 输出

[code:1:ff78191c7b]Running /usr/src/test/test2/test2

Temp output to /tmp/yamd-out.1243

*********

./run-yamd: line 101: 1248 Segmentation fault (core dumped)

YAMD version 0.32

Starting run: /usr/src/test/test2/test2

Executable: /usr/src/test/test2/test2

Virtual program size is 1380 K

...

INFO: Normal allocation of this block

Address 0x40025e00, size 512

...

INFO: Normal allocation of this block

Address 0x40028e00, size 512

...

INFO: Normal allocation of this block

Address 0x4002be00, size 512

ERROR: Crash

...

Tried to write address 0x4002c000

Seems to be part of this block:

Address 0x4002be00, size 512

...

Address in question is at offset 512 (out of bounds)

Will dump core after checking heap.

Done.[/code:1:ff78191c7b]

MEMWATCH 和 YAMD 都是很有用的调试工具,它们的使用方法有所不同。对于 MEMWATCH,您需要添加包含文件 memwatch.h 并打开两个编译时间标记。对于链接(link)语句,YAMD 只需要 -g 选项。

[color=blue:ff78191c7b]Electric Fence[/color:ff78191c7b]

共2页: 上一页 1 [2] 下一页

上一篇:深入浅出 Linux设备驱动编程内核模块   下一篇:开发人员眼中的Linux 2.6内核


收藏于收藏夹】 【评论】 【推荐】 【打印】 【关闭
相关文档
·开发人员眼中的Linux 2.6内核
·深入浅出 Linux设备驱动编程内核模块
·Linux 2.6内核新特性比较
·高手风范 Linux操作系统内核编码风格
·升级内核,感受Linux新时空
·高手进阶 更换Fedora Core 6的内核
·2.4和2.6上的Web服务
·介绍RedHat AS4内核配置更改再编译
·内核操作 Linux2.6内核驱动移植参考
·解析Linux中的VFS文件系统机制
·详细解析 Linux内核的主要配置选项
·Linux下PCI设备驱动程序开发基本框架
·定制Linux内核 充分发挥系统的潜能
·一个Linux爱好者的2.6.内核编译过程
·谈谈GCC4.0几个值得关注的新特性
·内核中的物理内存分配函数kernel api
发表评论
密码: 匿名评论
评论内容:

(不超过250字,需审核后才会公布,请自觉遵守互联网相关政策法规)
 
  最新文档
·学习园地:Linux系统内核中判断大小的
·系统编译:如何给Make命令来传递参数
·Linux 2.6内核中sysfs文件系统简单概述
·Fedora 8 Linux系统的内核配置注意事项
·升级Linux内核的一般步骤方法
·Linux发行版知识普及:三个版本的CPUID
·编译安装Virtualbox驱动模块
· Linux系统的内核解读入门
·新手学堂 Linux系统的内核解读入门
·Linux系统内核中网络参数的意义及其应
·走向Linux系统高手之路 内核编译过程解
·Linux系统中安装内核的方法详细介绍
  阅读排行
· 深入理解LINUX内核中文版下载地址
·基于S3C44B0微处理器的uClinux内核引导
·Kernel command using Linux system ca
·Linux 2.6内核如何武装Fedora Core 2
·Process priority and control on AIX
·Linux操作系统的内核编译内幕详解
·推荐:Linux用户态与内核态的交互
·通过振动向Linux ThinkPad传输信息
·Linux操作系统源代码详细分析(二)
·Linux系统内核接收以太帧的处理程序
·Linux and symmetric multiprocessing
·主流嵌入式Linux系统下GUI解决方案
·揭秘Linux内核调试器之内幕
·用命令行加挂Linux的文件系统简介
·Linux内核和核心OS组件的测试与分析
网摘收藏: